O: Circuncentro ; R: Circunradio ; r: Inradio
OM, ON y OQ : Mediatrices ; ON' = ha ; OQ' = hb ; OM' = hc
x = MR ; y = NS ; z = QT
• QUEREMOS HALLAR EL VALOR DE x+y+z
• HALLEMOS x
• <R'MO = <N'OC = <A , MO = OC = R
=> ∆R'MO = ∆N'OC -> MR' = ON' = ha
• x = MR = MR'+R'R ; R'R = OQ' = hb
=> x = ha+hb ...... [1]
• HALLEMOS y
• <S'NO = <Q'OA = <B , NO = OA = R
=> ∆S'NO = ∆Q'OA -> NS' = OQ' = hb
• y = NS = NS'+S'S ; S'S = OM' = hc
=> y = hb+hc ...... [2]
• HALLEMOS z
• <T'QO = <M'OB = <C , QO = OB = R
=> ∆T'QO = ∆M'OB -> QT' = OM' = hc
• z = QT = QT'+T'T ; T'T = ON' = ha
=> z = hc+ha ...... [3]
• Sumando [1], [2] y [3]:
• x+y+z = 2(ha+hb+hc)
• Usando Propiedad 1.4 : x+y+z = 2(R+r) = 2(6+2)
• => x+y+z = 16 m.
Friday, August 1, 2008
Solucion 1.1
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment